Super elliptic curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super Elliptic Curves

A detailed study is made of super elliptic curves, namely super Riemann surfaces of genus one considered as algebraic varieties, particularly their relation with their Picard groups. This is the simplest setting in which to study the geometric consequences of the fact that certain cohomology groups of super Riemann surfaces are not freely generated modules. The divisor theory of Rosly, Schwarz,...

متن کامل

Super-Isolated Elliptic Curves and Abelian Surfaces in Cryptography

We call a simple abelian variety over Fp super-isolated if its (Fp-rational) isogeny class contains no other varieties. The motivation for considering these varieties comes from concerns about isogeny based attacks on the discrete log problem. We heuristically estimate that the number of super-isolated elliptic curves over Fp with prime order and p ≤ N , is roughly Θ̃( √ N). In contrast, we prov...

متن کامل

Elliptic Nets and Elliptic Curves

Elliptic divisibility sequences are integer recurrence sequences, each of which is associated to an elliptic curve over the rationals together with a rational point on that curve. In this paper we present a higher-dimensional analogue over arbitrary base fields. Suppose E is an elliptic curve over a field K, and P1, . . . , Pn are points on E defined over K. To this information we associate an ...

متن کامل

Elliptic Curves

This is a introduction to some aspects of the arithmetic of elliptic curves, intended for readers with little or no background in number theory and algebraic geometry. In keeping with the rest of this volume, the presentation has an algorithmic slant. We also touch lightly on curves of higher genus. Readers desiring a more systematic development should consult one of the references for further ...

متن کامل

Elliptic Curves

1. Throughout P = C ∪ {∞} denotes the Riemann sphere, H denotes the upper half plane, C∗ denotes the multiplicative group of complex numbers, and P = (C \ {0})/C∗ denotes n dimensional complex projective space. For w ∈ C \{0} let [w] := wC∗ denote the corresponding point of P. For A ∈ GLn+1(C) let MA denote the corresponding automorphism of projective space so that MA([w]) = [Aw]. Identify P an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 1995

ISSN: 0393-0440

DOI: 10.1016/0393-0440(94)00012-s